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Numerical experiments recently discussed in the literature show that identical nonlinear chaotic systems
linked by a common noise term~or signal! may synchronize after a finite time. We study the process of
synchronization as a function of the precision of calculations. Two generic behaviors of the average coales-
cence time are identified: exponential or linear. In both cases no synchronization occurs if iterations are done
with infinite precision.@S1063-651X~96!51509-6#

PACS number~s!: 05.45.1b, 05.40.1j

It is well known that deterministic systems may exhibit a
chaotic behavior@1#. Typically, two chaotic orbits initially
displaced only slightly from each other deviate exponentially
with time approaching separation on the order of the strange
attractor size. In practice this means that small errors make
long time evolution of nonlinear, dynamical systems unpre-
dictable@1#. Thus, identical chaotic systems are not expected
to synchronize.

Recently, in a series of papers@2–5#, it has been demon-
strated that synchronization could nevertheless be achieved if
the systems are linked by acommonsignal or noise term of
an appropriate strength. That is, if we take a chaotic map and
start numerical evolution of two arbitrarily chosen initial
points subject to the same sequence of noise, the resulting
trajectories will collapse after a finite number of iterations.

Two cases could be distinguished. The first one, discussed
by Pecoraet al. @2# and Fahyet al. @2# ~PF!, defines the
collapse as a process where the average distance between the
trajectories converges exponentially to zero. According to PF
such synchronization takes place if the largest Lyapunov ex-
ponent becomes negative.

A different scenario was found by Maritan and Banavar
~MB! @4#. They claimed that the coalescence also may occur
abruptly, without any specific time dependence of the aver-
age distance between the trajectories. As an example they
studied the well-known one-dimensional logistic map
@1,6–9# in the presence of additive noise

x854 x~12x!1Wh ~1!

where 0<x<1; h is a random number chosen uniformly
from the interval21 to11 andW.0 is the strength of the
noise. The values ofh violating the bounds 0<x8<1 were
discarded and a newh was chosen. They found that for
W.Wc (Wc'0.55) and after about 106 iterations the trajec-
tories of almost any two points became identical and follow
a single random trajectory. As a conclusion they claimed that
in the limit of infinite time and finite precision all trajectories
should collapse forW.Wc . Thus atW5Wc one would get

a kind of phase transition. Several data were exhibited to
confirm the collapse and the existence of the transition.

Recently Pikovski@5# has suggested that the synchroniza-
tion observed by MB is a numerical effect of finite precision
of calculations. However, no systematic analysis has been
given. It is therefore of interest to investigate the effect of
computer roundoff on the coalescence, which we would like
to propose in this paper. We show that the average coales-
cence time~or simply the relaxation time!, T, for the two
orbits of the model ~1! follows the exponential law:
T5eA(W)1B(W)N with A andB being functions of the noise
strength;N is the precision of the calculations. This law,
which is different from the one suggested in@5#, proves that
statistically the coalescenceneveroccurs for a map or flow
of infinite precision.

We also show thatno nontrivial critical valueWc exists.
Even forW,0.5 the collapse does occur. If we consider
finite precision iterations andW>Wmin50.53102N then the
two different trajectories should always collapse. As a con-
clusion one can say that the limit discussed in the paper of
MB ~first, time going to infinity, then the precision going to
infinity! is trivially satisfied in the sense that~almost! all two
points coalesce in this limit. Finally, a synchronization by
common signals observed in the chaotic systems with nega-
tive Lyapunov exponents@2# yields the relaxation time linear
with N.

Our analysis starts by considering the map studied by
MB, Eq. ~1!. But the approach differs from that of MB in the
way the map is iterated. Namely, we perform the iterations
with controlled absolute accuracyby fixing the number of
digits after the decimal point. More specifically, for all num-
bers from interval @0,1# with decimal representation
x50 .a1a2•••aN the value ofN is being fixed after each
iteration. Here the symbol ‘‘.’’ represents the decimal point
andai50,1, . . . ,9 (i51, . . . ,N). For x51 we get automati-
cally x850.

Finite accuracy calculations are done with programs run-
ning under control of theMAPLE package. To use the pro-
gram the precisionN has to be fixed. We assumeN to vary
from 1 to 16. Next, the noise strengthW must be given and
the two initial numbers for the trajectories chosen randomly
from the interval@0,1#. After these preparations are done we
start two independent iterations according to the prescription
~1!. The process continues until both trajectories became nu-
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merically identical. The corresponding number of iterations
is called coalescence time and denotedt. The whole proce-
dure ~with fixed N andW) is repeated 100 times to getT.

Results of the simulations are shown as triangles in Fig. 1,
where ln(T) varies with N for W50.7. Circles represent
similar simulations but withN denotingrelative precision,
i.e., the number of digits in the mantissa as in usual floating
point arithmetic. Note that for the map given by Eq.~1!, the
absolute and the relative precision calculations yield statisti-
cally the same results.

Additionally, two histograms, representing the probability
distribution functionP(t) that the coalescence time ist, are
shown as insets of Fig. 1. They are constructed forN58 and
for two different samples composed of 100 and 10 000
points, respectively. Thought has substantial statistical fluc-
tuations, the difference between ln(T) calculated for both
samples differs by less than 0.9%. A similar result is found
for N515 with the averages taken over 100 and 1000 points.
Hence 100 realizations of the process provide a useful esti-
mate of ln(T).

We shall observe thatT increases exponentially withN.
This has been shown in Fig. 1 by plotting a line
ln(T).2.29710.765N (16>N>3) of the best least-square
fit, which on the average is good to within better than 2.5%.
Interestingly, similar linear dependence of ln(T) onN is pre-
dicted for other values ofW. This indicates that~statistically!
two trajectoriesnevercollapse in the limit of infinite preci-
sion.

At this point we would like to turn to the results of MB.
They found coalescence of the trajectories forW50.6 but
not forW50.3, in both cases the number of iterations being
53105. Clearly, forW50.3 the number of iterations they
performed was much too small to see coalescence. We found
that for double precision experiments and forW50.5 –
0.6, time T is orders of magnitude smallerthan that for
W50.1 orW50.3. More specifically, forW50.1 the col-
lapse is expected after about 1014 iterations while for
W50.3 after 1012 iterations. This effect is illustrated in Fig.
2, where ln(T) is plotted as a function ofW for different
values ofN. As previously averages are taken over 100t ’s.
Again the influence of scatter of the data on ln(T) is tested

for N53 and N57 where additionally the averages are
taken over 1000 experiments. In both cases the results are
practically independent of the sample size. ForN53 this is
shown in Fig. 2 where triangles represent averages over 100
experiments and circles over 1000. It is seen thatT is high
for small values ofW and decreases with increasingW. A
minimum of T is found aroundW50.6. ThenT increases
again to finally saturate forW>1. This behavior is observed
for all values ofN studied and its origin will be explained
later in the paper.

Now one can easily understand the results of MB, pre-
sented in their Fig. 2. A maximum of the probability that the
two trajectories collapse~denoted asl in @4#! corresponds to
our minimum ofT ~see Fig. 2!. Likewise, the decrease of
l for W.0.6 is connected with our increase ofT. The dif-
ference between our results and theirs is that we do not ob-
serve any transition aroundW50.5. Generally we find that
collapse takes place for all values ofW such that
W>Wmin . This has been checked forN<8. For higher val-
ues ofN time t becomes too long and calculations are prac-
tically impossible.

In order to understand whyW must be nonzero to get
collapse please note that any chaotic map loses its chaotic
character when iterated with a finite accuracy@10#. Take, for
example, the logistic map~1! and fix accuracy toN53. The
domain of the map consists in this case of 10311 states
~boxes! equal (0,0.001,0.002,. . . ,0.999,1). ForW50 these
numbers evolve either to one of the fixed points:x50 or
x50.750 or to a cycle of length 13:$0.109, 0.190, 0.204,
0.328, 0.388, 0.416, 0.616, 0.650, 0.882, 0.910, 0.946,
0.950, 0.972%. Thus, in the absence of noise the trajectories
belong to periodic orbits or fixed points and only acciden-
tally can they collapse. ForWÞ0 the structure of the cycles
is destroyed. Even the smallest numerical value of the noise
(W5Wmin), which either does not modify the iterated states
or modifies them by60.001 ~each realization being of the
same probability equal to 1/3!, is sufficient to have nonzero
probability that all initial states are again accessible from any
other state after a finite number of iterations. Interestingly,
Wmin does not depend on detailed structure of periodic orbits
indicating that any sort of noise that restores ergodicity
would yield collapse of the trajectories. The same statements

FIG. 1. Logarithm of average relaxation time versus accuracy
for W50.7. The straight line represents the best least-square fit
obeying 3<N<16. Triangles represent absolute accuracy calcula-
tions while circles represent relative ones. For each accuracy the
average is performed over 100 samples. Insets show the histograms
of the coalescence times forN58 and for two sample sizes equal to
100 and 10 000, respectively.

FIG. 2. Logarithm of the average relaxation time versus the
strengthW of the noise. Accuracies considered areN53 ~triangles
and circles!, 4 ~diamonds!, 5 ~pentagons!, and 6~hexagons!. Aver-
ages are performed over 100 samples except forN53 ~circles!
which corresponds to 1000 samples. The lines are introduced to
guide the eye.
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hold for arbitraryN. Instead, if we consider infinite accuracy
the probability that two numbers coming out of iterations are
different is one. As we are in chaotic region, where dynamics
is strongly sensitive to the initial conditions, these two points
will move away from each other in the forward iterations.

Another feature of the logistic map found in our simula-
tions and displayed in Fig. 2 is behavior of the curves ln(T)
as a function ofN. Namely, theyall scale linearly withN,
i.e., ln(T)5A(W)1B(W)N, with W-dependent coefficients.
Using the data shown in Fig. 2 we estimatedA(W) and
B(W) by performing a linear least-square fit for eachW
separately. The obtained set of points is given in Fig. 3.
These data show that forW'1 the time T behaves as
10N/2 and forW50.6 as 10N/3, which differs from the 102N

law suggested in@5#.
Finally, Fig. 3 allows one to estimateT for W50.3 and

for N515 as being of order of 1012. This is the reason why
in experiments of MB, which dealt with 106 iterations, the
collapse forW50.3 statistically has not been observed.

A further insight into the coalescence process and its con-
nection to the accuracy could be achieved by converting the
logistic map~1! into the 2y modulo 1 map@7#

y852y modulo 11g~W,h, . . . !. ~2!

This is done in practice by a change of variables:

x5 1
2 @12cos(2py)#. Note that the transformed noise, de-

noted byg(W,h, . . . ), depends at timen on the system
states prior ton. This dependence, represented by dots in Eq.
~2!, appears quite nontrivial and will not be of our concern
here. Instead we will discuss a simple case where the precise
form of g(W,h, . . . ) is irrelevant. Again the values ofg
violating the bonds 0<y8<1 are discarded.

Suppose that we study the binary version of the map~2!
in the interval@0,1!. That is, we iterate the map by represent-
ing each number~including the noise term! as a binary deci-
mal 0 .a1a2a3•••aN•••[( i51

` 22 iai , where each of the
digitsai is either 0 or 1. With this simple change of base the
iterations of the map~2! could be viewed as moving the
decimal point ‘‘.’’ one position to the right~Bernoulli shift!.

A binary number of accuracyN could now be introduced
as the one for whichaj50,; j.N. Consider two arbitrary
numbersx andy of binary accuracyN and assume that their
binary representations are of the form 0 .x1x2x3•••xN and

0 .y1y2y3•••yN , respectively. The first iteration moves the
points one step to the right yieldingx850 .x2x3•••xN0 and
y850 .y2y3•••yN0. As the last digit~zero! is now the same
for both numbersx8 andy8 the noise converts them into two
numbers with the same digit~theNth digit of the noise! at
positionN after the point. Successive iterations in the pres-
ence of noise increase the number of identical digits by one
making the coalescence timet&N and, consequently,T must
be a linear function ofN. Similar linear behavior ofT with
N is predicted for the PF models@2#. This follows directly
from the fact that the average distance,d, between the PF
trajectories at the timeT is d5A010

2T/l, whereA0 andl
are model dependent parameters. Comparingd with 102N

yieldsT;lN.
Let us now come back to the logistic map and comment

on two issues:~a! why the minimalT is found forW*0.5
and~b! how T could be connected with the properties of the
map and of the noise. An important point to note~see also
@4#! is that, in general, chaotic maps consist of iterations that
are composed of two parts, the one which stretches the dis-
tance between the points and the other where the distance is
enlarged. Consider the distancedl between images ofx and
y

dl :S{~x,y!→4ux2yuu12~x1y!u, ~3!

where S5@0,1#3@0,1#. Then the distance contracting re-
gion, V, is given by the condition: 3/4,x1y,5/4, where
(x,y) P S. That is,; (x,y)PV: dl(x,y) , ux2yu. If we
require that the reduction of the distance is smaller than«,
i.e., dl(x,y),«ux2yu, then the states (x,y) must be re-
stricted to a stripV« , V given by the inequality
12«/4,x1y,11«/4. The areaṼ« , V« , where shrink-
ing of the distance is the strongest, is found around
(x,y)5(1/2,1/2), where dl(1/26«/2,1/26«8/2) 5
u«22(«8)2u.

To proceed further we assume that the random orbits are
described by the joint probability distribution function
rW(x,y) @(x,y)PS# and apply the noise to all pairs of num-
bers (x,y). Now the probabilityPW(«) that this procedure
yields two numbers such that after applying the map, they
are moved into the contracting areaV«, is given by the for-
mula

PW~«!5E
0

1E
0

1

dx dy rW~x,y!
uI~x,y;W!ùV«u
uI~x,y;W!ùSu

~4!

where I(x,y;W) is the interval from (x2W,y2W) to
(x1W,y1W) of length uI(x,y;W)u 5 2A2W. The key
quantity entering the formula~4! is rW(x,y). Clearly,
rW(x,y) should be peaked about the diagonalx5y with
strong ~absolute! maximum at (x,y)5(1,1). This observa-
tion follows from the fact that the logistic map exhibits sin-
gular density of states near 1 and 0 and that the points
around 0 are images of those around 1. As after each itera-
tion the noise is added~with the constraint that the pair of
numbers stays within the basin of attraction of the map! the
points around 0 are obtained less frequently. Thus, to get
maximal probabilityP(«) the integration in Eq.~4! should
include the region around (1,1) which implies thatW*0.5.
On the other hand, the second term under the integral, which

FIG. 3. CoefficientsA(W) ~thin line! andB(W) ~thick line! of
T(N) for the model~1!. The lines are guides to the eye.
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gives the probability of finding the noise-shifted point in
V« , is forW*0.5 a decreasing function ofW and saturates
for W.1. Combining these two facts we conclude that
PW(«) should be, forW&1, a decreasing function ofW,
approaching saturation forW.1. The saturation could be
preceded by a maximum, lying between 0.5&W&1. In this
case one gets a minimum ofT for 0.5&W&1. Finally,
lim«→0PW(«)→0 implies thatT→` for N→`.

The upper limit ofT forW*0.5 also could be found from
the formula ~4!. As the distributionrW(x,y) is strongly
peaked around (1,1) the functionPW(«) actually gives a
probability of finding a point in the areaṼ« . From Eq.~4! it
follows that the frequency of getting a point inṼ« is propor-
tional to« which givesT;1/«. For «5102N/2 the image of
any point fromṼ« yields two numbers that are 102N apart
indicating that the two trajectories just collapsed. Hence
T;10N/2, which is what we find forW'1.

These observations have important practical conse-
quences. They suggest that the coalescence time to a fixed
precision could be controlled by the noise. For the map~1!
this is achieved by accepting only thoseh ’s in Eq. ~1! which
give points (x8,y8) restricted toV« . Allowed values of« as
functions of assumedN andT and forW>0.5 could again be
inferred from Eq.~4!.

In conclusion, we showed that in order to understand the
recently observed phenomenon of coalescence of the trajec-
tories @2,4# the precision of the calculations must be taken
into account. For all systems studied in the literature so far,
the average coalescence timeT is either a linear or an expo-
nential function of the precision of the calculations. Thus,
statistically, coalescence never occurs when precision is in-
finite. Clearly the arguments as given are of general validity
and the logistic map or the tent map could serve as examples.

One may wonder whether the predicted linear~or expo-
nential! behavior ofT with N could be correlated with the
sign of the maximal Lyapunov exponent. If the identical cha-
otic systems are subject to an external noise, which is gen-
erated at each time step independently of the previous values
and of the states of the systems, then the analysis proposed
by Pikovsky applies@3#. In this case the largest Lyapunov
exponent can be calculated from a single system. If this ex-
ponent is negative then, at least, for the systems studied in
@3# this would imply the linear dependence ofT with N ~i.e.,
synchronization!. However, such linear dependence does not
necessarily mean that the maximal Lyapunov exponent must
be negative. For example, in the case of the binary tent map,
where T varies linearly with N (;g), the sign of the
Lyapunov exponent~for N→`) could be arbitrary. Also we
would like to add that the technique@3# does not apply when
the noise depends on the states of the systems, Eqs.~1!, ~2!.
In this case the difference between ensembles with positive
and negative Lyapunov exponents is highly nontrival@11#.
This issue is currently under investigation and will be re-
ported elsewhere.

Finally, let us note thatT is governed by the properties of
the invariant density of the chaotic map, the structure of the
distance stretching area~s!, and the way in which the noise is
introduced. This is demonstrated for the random logistic map
~1!, whereT varies exponentially withN. The law we found
is different from a simple (102N)22 dependence suggested
in @5# ([«2D, whereD[2 is the topological dimension of
the space!.
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